Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes.

نویسندگان

  • Carrie S Ketel
  • Erica F Andersen
  • Marcus L Vargas
  • Jinkyo Suh
  • Susan Strome
  • Jeffrey A Simon
چکیده

The ESC-E(Z) complex of Drosophila melanogaster Polycomb group (PcG) repressors is a histone H3 methyltransferase (HMTase). This complex silences fly Hox genes, and related HMTases control germ line development in worms, flowering in plants, and X inactivation in mammals. The fly complex contains a catalytic SET domain subunit, E(Z), plus three noncatalytic subunits, SU(Z)12, ESC, and NURF-55. The four-subunit complex is >1,000-fold more active than E(Z) alone. Here we show that ESC and SU(Z)12 play key roles in potentiating E(Z) HMTase activity. We also show that loss of ESC disrupts global methylation of histone H3-lysine 27 in fly embryos. Subunit mutations identify domains required for catalytic activity and/or binding to specific partners. We describe missense mutations in surface loops of ESC, in the CXC domain of E(Z), and in the conserved VEFS domain of SU(Z)12, which each disrupt HMTase activity but preserve complex assembly. Thus, the E(Z) SET domain requires multiple partner inputs to produce active HMTase. We also find that a recombinant worm complex containing the E(Z) homolog, MES-2, has robust HMTase activity, which depends upon both MES-6, an ESC homolog, and MES-3, a pioneer protein. Thus, although the fly and mammalian PcG complexes absolutely require SU(Z)12, the worm complex generates HMTase activity from a distinct partner set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pc2 and SUMOylation.

Polycomb proteins are key regulators of transcription in metazoan organisms. Recent work has shed light on the nature of the polycomb protein complexes in flies and mammalian cells. Multiple enzymatic activities have been shown to associate with polycomb complexes, including histone methyltransferase, histone deacetylase and ubiquitination activities, which are primarily directed towards the mo...

متن کامل

FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana

Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers that regulate developmental pathways in plants. PcGs form nuclear multi-subunit Polycomb Repressive Complexes (PRCs). The PRC2 complex mediates gene repression via methylation of lysine 27 on histone H3, which consequently leads to chromatin condensation. In Arabidopsis thaliana, several PRC2 complexes with different...

متن کامل

New epigenetic pathway for stemness maintenance mediated by the histone methyltransferase Ezh1

The self-renewal capacity of stem cells is crucial for the homeostatic maintenance of adult tissues, in which they mediate the continuous replacement of differentiated cells, and is the focus of attempts to design patient-specific therapies. The Polycomb group proteins are key global epigenetic regulators of stem-cell fate decisions. The Polycomb family induces histone-specific posttranslationa...

متن کامل

Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity.

SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show that mice lacking Suz12, like Ezh2 and Eed mutant mice, are not viable and die during early postimplant...

متن کامل

EZ Switch From EZH2 to EZH1

An important area of research is the functional significance of posttranslational modifications of histone proteins. The modification of histones is maintained by a balance of enzymes which place specific modifications (writers), factors which read modifications (readers), and enzymes which remove modifications (erasers). Histone methylation is regulated by histone methyltransferases (writers) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 16  شماره 

صفحات  -

تاریخ انتشار 2005